
Chapter 1

Boolean Satisfiability
Solvers:
Techniques and Extensions

Sharad Malik, Georg Weissenbacher
Princeton University

1.1 Introduction

Boolean Satisfibility (SAT) is the problem of checking if a propositional logic
formula can ever evaluate to true. This problem has long enjoyed a special
status in computer science. On the theoretical side, it was the first problem
to be classified as being NP-complete. NP-complete problems are notorious for
being hard to solve; in particular, in the worst case, the computation time of any
known solution for a problem in this class increases exponentially with the size
of the problem instance. On the practical side, SAT manifests itself in several
important application domains such as the design and verification of hardware
and software systems, as well as applications in artificial intelligence. Thus,
there is strong motivation to develop practically useful SAT solvers.

However, the NP-completeness is cause for pessimism, since it is unlikely
that we will be able to scale the solutions to large practical instances. While
attempts to develop practically useful SAT solvers have persisted for almost
half a century, for the longest time it was a largely academic exercise with
little hope of seeing practical use. Fortunately, several relatively recent research
developments have enabled us to tackle instances with millions pff variables
and constraints – enabling SAT solvers to be effectively deployed in practical
applications including in the analysis and verification of software systems.

The first part of this chapter (Section 1.3) covers the techniques used in
modern SAT solvers. Moreover, it covers basic extensions such as the construc-

1

2 CHAPTER 1. BOOLEAN SATISFIABILITY SOLVERS

tions of unsatisfiability proofs. For instances that are unsatisfiable, the proofs
of unsatisfiability have been used to derive an unsatisfiable subset of constraints
of the formula, referred to as the UNSAT core. The UNSAT core has seen
successful applications in model checking.

The second part (Section 1.4) considers extensions of these solvers that have
proved to be useful in analysis and verification. Related to the UNSAT core are
the concepts of minimal correction sets and maximally satisfiable subsets. A
maximally satisfiable subset of an unsatisfiable instance is a maximal subset of
constraints that is satisfiable, and a minimal correction set is a minimal subset of
constraints that needs to be dropped to make the formula satisfiable. Section 1.4
discusses how these concepts are related and covers algorithms to derive them.

1.2 Preliminaries

1.2.1 Propositional Logic

Notation

Let V be a set of n propositional logic variables and let 0 and 1 denote the
elements of the Boolean domain B. Every Boolean function f : Bn → B can be
expressed as a propositional logic formula F in n variables x1, . . . , xn ∈ V. The
syntax of propositional logic formulae is provided in Figure 1.1a.

The interpretation of the logical connectives {−,+, ·,→,↔,⊕} is provided
in Table 1.1. We use ≡ to denote logical equivalence. For brevity, we may omit
· in conjunctions (e.g., x1x3). An assignment A is a total mapping from V to
B, and A(x) refers to the value A assigns to x. A partial assignment A is a
total mapping from V to (B ∪ V) such that A(x) ∈ B for all assigned variables
x ∈ V and A is the identity function A(y) = y for all unassigned variables
y ∈ V. A satisfies a formula F (x1, . . . xn) iff F (A(x1), . . . ,A(xn)) evaluates
to 1 (denoted by A |= F). A formula F is satisfiable iff ∃A .A |= F , and
unsatisfiable (inconsistent, respectively) otherwise. We use #AF to denote the
number of satisfying assignments of a formula F and drop the subscript if F is
clear from the context. A formula F holds iff ∀A .A |= F .

We use LitV = {x, x |x ∈ V} to denote the set of literals over V, where x
is the negation of x. Given a literal ` ∈ LitV , we write var(`) to denote the
variable occuring in `. A cube over V is a product of literals `1 . . . `m such that
`i ∈ LitV and var(`i) 6= var(`j) for all i, j ∈ {1..m} with i 6= j. We write ` ∈ C
to indicate that the literal ` occurs in a cube C. Given an assignment A, we use
CA to denote the cube

∏n
i=1 `i where `i = xi if A(xi) = 1 and `i = xi otherwise.

Conjunctive Normal Form

Figure 1.1b shows the syntax of propositional logic formulae in Conjunctive
Normal Form (CNF).

1.2. PRELIMINARIES 3

x y x x · y x + y x → y x ↔ y x⊕ y

0 0 1 0 0 1 1 0
0 1 1 0 1 1 0 1
1 0 0 0 1 0 0 1
1 1 0 1 1 1 1 0

Table 1.1: Definition of Propositional Logic Operators

formula ::= formula · formula | formula + formula |
formula → formula | formula ↔ formula |
formula ⊕ formula | formula | (formula) | atom

atom ::= propositional identifier | constant
constant ::= 1 | 0

(a) Propositional Logic

formula ::= formula · (clause) | (clause)
clause ::= clause + literal | literal
literal ::= atom | atom
atom ::= propositional identifier

(b) Propositional Logic in Conjunctive Normal Form

Figure 1.1: Syntax of Propositional Logic

• CNF formula: A product of sums (conjunction of clauses)∏
i

∑
j

`i,j , `i,j ∈ {x, x |x ∈ V}

e.g.,
x1 · (x1 + x2) · (x1 + x2) · x1

• Note:

–
∑

`∈∅ ` ≡ 0 (we use � to denote the empty clause)

–
∏

`∈∅ ` ≡ 1

• Alternative (more compact) notation:

(x1) (x1 x2) (x1 x2) (x1)

• Clauses are represented as sets of literals. Accordingly, (x1 x2 x2) and
(x1 x2) are indistinguishable from their logically equivalent counterparts
(x1 x2 x2) and (x2 x1), respectively. Note that this representation implic-
itly incorporates factoring (i.e., merging of unifiable literals). A formula
in CNF is a set of sets of literals.

4 CHAPTER 1. BOOLEAN SATISFIABILITY SOLVERS

• Obtained through Tseitin transformation [Tse83]. Given a formula F in
propositional logic (c.f. Figure 1.1a):

1. Recursively replace each sub-formula (F1 B F2) of F (where B ∈
{−,+, ·,→,↔,⊕}) with a fresh propositional identifier x and add
the constraint x ↔ (F1 B F2).

2. Rewrite all constraints into CNF (see Table 1.2).

The resulting formula G in CNF is equi-satisfiable (i.e., (∃A .A |= F) ↔
(∃A .A |= G)) and its size is polynomial in the size of the original formula.

Example 1.2.1 Consider the formula y ⊕ z.

1. By definition of ⊕, (y ⊕ z) ≡ (y ↔ z).

2. Replace (y ↔ z) with x1:
x1 · (x1 ↔ (y ↔ z))

3. Replace x1 with x2 (this step is optional, since (x1) is already in clausal
form):
x2 · (x2 ↔ x1) · (x1 ↔ (y ↔ z))

4. Rewrite according to Table 1.2:
x2 · (x2 = x1)︸ ︷︷ ︸

(x1+x2)·(x1+x2)

· (x1 ↔ (y ↔ z))︸ ︷︷ ︸
(x1+y+z)·(x1+z+y)·(y+z+x1)·(y+z+x1)

5. We obtain an equi-satisfiable formula in CNF:
x2 · (x1 +x2) · (x1 +x2) · (x1 +y + z) · (x1 + z +y) · (y + z +x1) · (y + z +x1)

1.3 Boolean Satisfiability Checking: Techniques

1.3.1 Problem Definition

Definition 1.3.1 (Boolean Satisfiability Problem) Given a propositional
logic formula F , determine whether F is satisfiable.

The Boolean Satisfiability Problem, usually referred to as SAT, is a proto-
typical NP-complete problem [Coo71], i.e., there is no known algorithm that
efficiently solves all instances of SAT.

Using Tseitin’s transformation (c.f. Section 1.2.1) any arbitrary proposi-
tional formula can be transformed into an equi-satisfiable formula in clausal
form. It is therefore sufficient to focus on formulae in CNF.

There are two important sub-classes of SAT:

• 2-SAT. Each clause of the formula contains at most 2 literals. The satisfi-
ability of such 2-CNF formulae can be decided in polynomial time [Kro67]:
Each clause (`1, `2) can be rewritten as an implication `1 → `2 (or 1 → `1

1.3. BOOLEAN SATISFIABILITY CHECKING: TECHNIQUES 5

Negation:
x ↔ y ≡ (x → y) · (y → x)

≡ (x + y) · (y + x)

Disjunction:
x ↔ (y + z) ≡ (y → x) · (z → x) · (x → (y + z))

≡ (y + x) · (z + x) · (x + y + z)

Conjunction:
x ↔ (y · z) ≡ (x → y) · (x → z) · ((y · z) → x)

≡ (x + y) · (x + z) · ((y · z) + x)
≡ (x + y) · (x + z) · (y + z + x)

Equivalence:
x ↔ (y ↔ z) ≡ (x → (y ↔ z)) · ((y ↔ z) → x)

≡ (x → ((y → z) · (z → y)) · ((y ↔ z) → x)
≡ (x → (y → z)) · (x → (z → y)) · ((y ↔ z) → x)
≡ (x + y + z) · (x + z + y) · ((y ↔ z) → x)
≡ (x + y + z) · (x + z + y) · (((y · z) + (y · z)) → x)
≡ (x + y + z) · (x + z + y) · ((y · z) → x) · ((y · z) → x)
≡ (x + y + z) · (x + z + y) · (y + z + x) · (y + z + x)

Table 1.2: Tseitin transformation [Tse83] for standard Boolean connectives

and `1 → 0 in case of a clause (`1) with only one literal). The formula
is satisfiable if the transitive closure of the implications does not yield 0.
This approach effectively amounts to resolution (see Section 1.3.2).

• 3-SAT. Each clause of the formula contains at most 3 literals. This form
is relevant because any arbitrary formula in CNF can be reduced to an
equi-satisfiable 3-CNF formula by means of Tseitin’s transformation (Sec-
tion 1.2.1).

1.3.2 Resolution Proofs

The resolution principle states that an assignment satisfying the clauses C + x
and D+x also satisfies C∨D. The clauses C +x and D+x are the antecedents,
x is the pivot, and C ∨D is the resolvent. Let Res(C,D, x) denote the resolvent

6 CHAPTER 1. BOOLEAN SATISFIABILITY SOLVERS

of the clauses C and D with the pivot x. It is formally described below.

C + x D + x

C + D
[Res]

Resolution corresponds to existential quantification of the pivot and subse-
quent quantifier elimination:

∃x . (C + x) · (D + x)
≡ ((C + x) · (D + x)) [x/1] + ((C + x) · (D + x)) [x/0]

≡ (C + 1)︸ ︷︷ ︸
1

· (D + 1)︸ ︷︷ ︸
D

+(C + 0)︸ ︷︷ ︸
C

· (D + 0)︸ ︷︷ ︸
1

≡C + D

(F [x/e] denotes the substitution of all free occurrences of x in F with the
expression e.) Repeated application of the resolution rule results in a resolution
proof.

Definition 1.3.2 A resolution proof R is a DAG (VR, ER, pivR, `R, sR), where
VR is a set of vertices, ER is a set of edges, pivR is a pivot function, `R is the
clause function, and sR ∈ VR is the sink vertex. An initial vertex has in-degree
0. All other vertices are internal and have in-degree 2. The sink has out-degree
0. The pivot function maps internal vertices to variables. For an internal vertex
v and (v1, v), (v2, v) ∈ ER, `R(v) = Res(`R(v1), `R(v2), pivR(v)).

A resolution proof R is a refutation if `R(sR) = �. A refutation R is a
refutation for a formula F (in CNF) if the label of each initial vertex of R is a
clause of F .

Example 1.3.1 (Unit Propagation and Resolution) Figure 1.2 shows an
example of a resolution proof for the formula

(x1) · (x1 + x2) · (x1 + x2) · (x1) . (1.1)

Note that this formula is a 2-CNF formula and can therefore be solved by means
of transitive closure of the corresponding implications. Equivalently, the un-
satisfiability of Formula (1.1) can be established by repeated application of the
unit-resolution rule:

` D ∨ `

D
[URes]

Here, ` denotes a literal over the pivot variable.

1.3.3 The Davis-Putnam Procedure

The resolution rule is sufficient to devise a complete algorithm for deciding the
satisfiability of a CNF formula [Rob65].

Theorem 1.3.1 (Completeness of Propositional Resolution) If F is an
inconsistent formula in CNF, then there is a resolution refutation for F .

1.3. BOOLEAN SATISFIABILITY CHECKING: TECHNIQUES 7

x1

x1x2 x1x2 x1

x2

x1

�

Figure 1.2: Resolution proof

Proof sketch. (c.f. [Bus98]) By induction over the number of variables in F .
In the base case, where no variables appear in F , the formula must contain the
empty clause �. For the induction step, let x be a fixed variable in F , and let
F ′ to be the formula defined as follows:

1. For all clauses (C + x) and (D + x) in F , the resolvent Res((C + x), (D +
x), x) is in F ′.

2. Every clause C in F which contains neither x nor x is in F ′.

It is clear that x does not occur in F ′ unless F contains trivial clauses C for
which {x, x} ⊆ C. W.l.o.g., such tautological clauses can be dropped. Then,
F ′ is satisfiable if and only if F is, from whence the theorem follows by the
induction hypothesis.

Remark Resolution is merely refutation-complete, i.e., while it is always pos-
sible to derive � from an inconsistent formula, it does not enable us to derive all
valid implications (we cannot deduce (x + y) from (x) by means of resolution,
for instance, even though the latter obviously entails the former).

The constructive proof sketch above is interesting for two reasons:

• It demonstrates that propositional resolution is complete even if we fix the
order of pivots along each path in the proof, and

• it outlines a decision procedure which is known as Davis-Putnam proce-
dure [DP60].

We refer to the algorithm presented in [DP60] as “Davis-Putnam” procedure
or simply DP. The Davis-Putnam procedure comprises three rules:

1. 1-literal rule. Whenever one of the clauses in F is a unit clause, i.e.,
contains only a single literal `, then we obtain a new formula F ′ by

(a) removing any instances of ` from the other clauses, and

(b) removing any clause containing `, including the unit clause itself.

This rule obviously subsumes unit-resolution (see Example 1.3.1).

8 CHAPTER 1. BOOLEAN SATISFIABILITY SOLVERS

2. The affirmative-negative rule. If any literal ` occurs only positively or only
negatively in F , then remove all clauses containing `. This transformation
obviously preserves satisfiability.

3. The rule for eliminating atomic formulae. For all clauses (C + x) and
(D+x) in F , where neither C nor D contain x or x, the resolvent Res((C+
x), (D + x), x) is in F ′. Moreover, every clause C in F which contains
neither x nor x is in F ′.

The last rule can make the formula increase in size significantly. However,
it completely eliminates all occurrences of the atom x. The correctness of the
transformation is justified by the resolution principle (see Section 1.3.2).

In practice, the resolution rule should only be applied after the 1-literal rule
and affirmative-negative rule. The 1-literal rule is also known as unit propagation
and lends itself to efficient implementations.

Once this option is exhausted, we face a choice of which pivot variable x
to resolve on. While there is no “wrong” choice that forfeits completeness (as
established in the proof of Theorem 1.3.1), a “bad” choice of a pivot may result
in a significant blowup of the formula, and therefore retard the performance of
the solver. We postpone the discussion of selection strategies to Section 1.3.7.

1.3.4 The Davis-Putnam-Logemann-Loveland Procedure

For realistic problems, the number of clauses generated by the DP procedure
grows quickly. To avoid this explosion, Davis, Logemann, and Loveland [DLL62]
suggested to replace the resolution rule with a case split. This modified algo-
rithm is commonly referred to as DPLL procedure. It is based on the identity
known as Shannon’s expansion:

F ≡ x · F [x/1] + x · F [x/0] (1.2)

Accordingly, checking the satisfiability of a formula F can be reduced to
testing F · x and F · x separately. The subsequent application of unit prop-
agation (the 1-literal rule, respectively) can reduce the size of these formulae
significantly. This transformation, applied recursively, yields a complete deci-
sion procedure.

In practice, this split is not implemented by means of recursion but in an
iterative manner (using tail recursion, respectively). We keep track of the re-
cursive case-splits and their implications using an explicit trail. Each entry in
this trail represents an assignment to a variable of F imposed by either a case
split or by unit propagation. We refer to the former as guessed and to the latter
as implied assignments.

Definition 1.3.3 (Clauses under Partial Assignments) A trail represents
a partial assignment A to the variables V of F .

• A clause C is satisfied if one or more of its literals evaluates to 1 under
the partial assignment A.

1.3. BOOLEAN SATISFIABILITY CHECKING: TECHNIQUES 9

Level Partial Assignment Clauses Trail
0 – (x1 x4 x3)(x3x2)
1 {x1 7→ 1} (x1 x4 x3)(x3x2) x1, guessed
2 {x1 7→ 1, x4 7→ 1} (x1 x4 x3)(x3x2) x4, guessed

{x1 7→ 1, x4 7→ 1, x3 7→ 1} (x3)(x3x2) x3, implied
{x1 7→ 1, x4 7→ 1, x3 7→ 1, x2 7→ 0} (x2) x2, implied

Table 1.3: Assignment trail for Example 1.3.2

• A clause C is conflicting if all of its literals are assigned and C evaluates
to 0 under A.

• A clause C becomes unit under a partial assignment if all but one of its
literals are assigned but C is not satisfied. As such, C gives rise to an
implied assignment. In this case, we say that C is the antecedent of the
implied assignment.

• In all other cases, we say that the clause C is unresolved.

Example 1.3.2 Consider the clauses

C1 ≡ (x1 x4 x3) and C2 ≡ (x3 x2) .

Table 1.3 shows a possible trail for this instance. Initially, neither of the
clauses is unit, forcing us to guess an assignment for one of the variables and
thus to introduce a new decision level. We choose to explore the branch in which
x1 is assigned 1 first. the first entry in the trail, the literal x1, represents this
decision. Neither of the clauses is unit under this assignment; we decide to
assign x4. The clause C1 is unit under the partial assignment {x1 7→ 1, x4 7→
1} and implies the assignment x3 7→ 1 (note that we mark the assignment as
“implied” in the trail). This assignment, in turn, makes C2 unit, imposing the
assignment x2 7→ 0. The resulting assignment satisfies C1 as well as C2.

A trail may lead to a dead end, i.e., result in a conflicting clause, in which
case we have to explore the alternative branch of one of the case splits previ-
ously made. This corresponds to reverting one of the decisions or backtracking,
respectively.

Example 1.3.3 (Backtracking) Consider the set of clauses

C1 ≡ (x2 x3) C2 ≡ (x1x4) C3 ≡ (x2x4) C4 ≡ (x1x2x3) .

Figure 1.3a shows a trail that leads to a conflict (assignments are represented
as literals, c.f. Section 1.2.1). Clause C4 is conflicting under the given assign-
ment. The last (and only) guessed assignment on the given trail is x1 7→ 1.
Accordingly, we backtrack to this most recent decision (dropping all implica-
tions up to this point) and revert it to x1 7→ 0 (see Figure 1.3b). We tag the

10 CHAPTER 1. BOOLEAN SATISFIABILITY SOLVERS

x1, guessed

x4, implied

x2, implied

x3, implied

�
(a) Conflicting trail

x1 7→ 0, x2 7→ 0, x3 7→ 1

x1, guessed

x4, implied

x2, implied

x3, implied

�

x1, implied

x2, guessed

x3, impliedba
ck

tr
ac

k

(b) Trail after backtracking

Figure 1.3: Backtracking

assignment x1 7→ 0 as implied, since x1 7→ 1 led to a conflict. Thus, we prevent
that this assignment is reverted back to x1 7→ 1 at a later point in time, which
would lead to a loop.

When backtracking enough times, the search algorithm always yields a con-
flicting clause or a satisfying assignment and eventually exhausts all branches.
However, always reverting the last decision made is not necessarily the best
strategy, as the following example from [Har09] shows.

Example 1.3.4 Consider the clauses C1 ≡ (x1 xn xn+1) and C2 ≡ (x1 xn xn+1)
as part of an unsatisfiable formula F . Exploring the trail x1 x2 · · ·xn−1 xn leads
to a conflict forcing us to backtrack and explore the trail x1 x2 · · ·xn−1xn. Since
F is unsatisfiable, we are eventually (perhaps after further case-splits) forced
to backtrack. Unfortunately, each time we change one of the assignments to
x1, . . . , xn−1, we will unnecessarily explore the case in which xn is 1 again.

The next section introduces conflict clauses as a means to prevent the re-
peated exploration of infeasible assignments.

1.3.5 Conflict-Driven Clause Learning

In their solver Grasp, João Marques-Silva and Karen Sakallah [MSS96] intro-
duced a novel mechanism to analyse the conflicts encountered during the search
for a satisfying assignment.

1.3. BOOLEAN SATISFIABILITY CHECKING: TECHNIQUES 11

x1@1

x4@2

x3@2 x2@2
C1

C1

C2

Figure 1.4: An implication graph for the trail in Table 1.3

First, they partition trails into decision levels according to recursion depth
of the case-splits performed.

Definition 1.3.4 (Decision Levels) Each recursive application of the split-
ting rule gives rise to a new decision level. If a variable x is assigned 1 (owing
to either a case split or unit propagation) at decision level n, we write x@n.
Conversely, x@n denotes an assignment of 0 to x at decision level n.

Secondly, the implications in a trail are represented using an implication
graph.

Definition 1.3.5 (Implication Graph) An implication graph is a labelled di-
rected acyclic graph G(V,E).

• The nodes V represent assignments to variables. Each v ∈ V is labelled
with a literal and its corresponding decision level.

• Each edge in an implication graph represents an implication deriving from
a clause that is unit under the current partial assignment. Accordingly,
edges are labelled with the respective antecedent clauses of the assignment
the edge points to.

• An implication graph may contain a single conflict node, whose incoming
edges are labelled with the corresponding conflicting clause.

Example 1.3.5 (Implication Graph for Example 1.3.2) Figure 1.4 shows
the implication graph for the trail presented in Example 1.3.2.

If the implication graph contains a conflict, we can use it to determine the
decisions that led to this conflict. Moreover, it enables us to derive a conflict
clause, which, if added to the original formula, prevents the algorithm from
repeating the decision(s) that led to the conflict.

Example 1.3.6 (Implication Graph with Conflict) Figure 1.5 shows the
implication graph for a trail emanating from the decision x1 7→ 1 for the clauses

C1 ≡ (x2 x3), C2 ≡ (x1x4), C3 ≡ (x2x4), C4 ≡ (x1x2x3) .

12 CHAPTER 1. BOOLEAN SATISFIABILITY SOLVERS

x1@1 x4@1 x2@1 x3@1
C2 C3 C1 C4

�

Figure 1.5: An implication graph with a conflict

x1@6

x3@6

x5@3

x2@6

x4@6

C4

C4
�

C2

C2

C1 C3

Figure 1.6: An implication graph for Example 1.3.7 (presented in [KS08])

The final node in the graph represents a conflict. The initial node of the graph
is labelled with the decision that causes the conflict. Adding the unit clause (x1)
to the original clauses guarantees that the decision x1 will never be repeated.

Example 1.3.7 Figure 1.6 shows a partial implication graph for the clauses

C1 ≡ (x1x2), C2 ≡ (x1x3x5), C3 ≡ (x2x4), and C4 ≡ (x3x4)

and the decisions x1@6 and x5@3. Using the implication graph, the decisions
responsible for the conflict can be easily determined. Adding the conflict clause
(x1 + x5) to the original formula rules out that this very combination of assign-
ments is explored again.

The advantage of conflict clauses over simple backtracking becomes clear
when we revisit Example 1.3.4. Using an implication graph, we can quickly
determine the assignments x1@1 and xn@m which caused a conflict for either
C1 ≡ (x1 xn xn+1) or C2 ≡ (x1 xn xn+1). The conflict clause (x1+xn) eliminates
this combination, pruning a large fraction of the search space which simple
backtracking would have otherwise explored.

After adding a conflict clause, at least some of the decisions involved in
the conflict need to be reverted (otherwise, the trail remains inconsistent with
the clauses). Changing an assignment in the trail might invalidate all subse-
quently made decisions. Therefore, if we backtrack to a certain decision level
n, we discard all decisions made at a level higher than n. It is clear that, of
all decisions contributing to the conflict clause, we have to at least revert the

1.3. BOOLEAN SATISFIABILITY CHECKING: TECHNIQUES 13

x4@5

x5@5

x6@5

x10@3

x2@3

x7@5

�
C4

C4

C1

C2

C1

C2

C3

C3

Figure 1.7: Conflict analysis and resolution

one associated with the current decision level (x1@6 in Example 1.3.7, for in-
stance). The conflict-driven backtracking strategy suggests to backtrack to the
second most recent decision level in the conflict clause [MZM+01] (level 3 in Ex-
ample 1.3.7). This strategy has a compelling advantage: The blocking clause is
unit (or assertive) under the resulting partial assignment. For instance, (x1+x5)
in Example 1.3.7 immediately implies x1 in this scenario.

1.3.6 Conflict Clauses and Resolution

Clause learning with conflict analysis does not impair the completeness of the
search algorithm: even if the learnt clauses are dropped at a later point during
the search, the trail guarantees that the solver never repeatedly enters a decision
level with the same partial assignment.

We show the correctness of clause learning by demonstrating that each con-
flict clause is implied by the original formula.

Example 1.3.8 (Conflict Clauses and Resolution) Figure 1.7 shows a par-
tial implication graph for the clauses

C1 ≡ (x4 x2 x5) C2 ≡ (x4 x10 x6) C3 ≡ (x5 x6 x7) C4 ≡ (x6 x7) .

The conflicting clause in this example is C4. The immediate cause for the
conflict are assignments x6@5 and x7@5 to the literals x6 and x7 of the clause
C4. These literals are implied by the clauses C3 and C2, respectively. Clearly,
C3 and C4 (and C2 and C4) do not agree on the assignment of x7 (and x6,

14 CHAPTER 1. BOOLEAN SATISFIABILITY SOLVERS

respectively). Accordingly, if we construct the resolvent of C3 and C4 for the
pivot x7, we obtain a clause C5:

C5 ≡ Res(C4, C3, x7) ≡ (x5 x6)

While C5 is certainly conflicting under the current partial assignment, we
cannot use it as a conflict clause: both x5 and x6 are assigned at decision level
5 and therefore C5 is not assertive after backtracking.

As previously mentioned, C2 is the antecedent of x6, and by a similar reso-
lution step as before we obtain

C6 ≡ Res(C5, C2, x6) ≡ (x4 x5 x10) .

Again, x4 as well as x5 are assigned at decision level 5. The clause C1 is
the antecedent of x5, and we execute a final resolution step:

C7 ≡ Res(C6, C1, x5) ≡ (x2 x4 x10)

The resulting clause (x2 x4 x10) has the virtue of containing only one literal
which is assigned at decision level 5 while still conflicting with the current partial
assignment. Accordingly, if we backtrack to a decision level below 5, C7 becomes
assertive, forcing the solver to flip x4. Therefore, it is admissible to choose C7

as conflict clause.

We observe in Example 1.3.8 that it is possible to derive a conflict clause
from the antecedents in the implication graph by means of resolution. These
antecedents might in turn be conflict clauses. However, by induction, each
conflict clause is implied by the original formula. Formal arguments establishing
the completeness and correctness of clause learning and conflict analysis are
provided in [MS95, MS99, Zha03].

The following example demonstrates that, in general, there is a choice of
assertive conflict clauses.

Example 1.3.9 Consider the partial implication graph in Figure 1.8. Fig-
ure 1.9 shows three possible cuts that separate the decisions causing the conflict
from the conflicting node. This results in three candidates for conflict clauses:

1. C7 ≡ (x10 x1 x9 x11)

2. C8 ≡ (x10 x4 x11)

3. C9 ≡ (x10 x2 x3 x11)

We can dismiss the last clause, since it fails to be assertive after backtracking.
The clauses (x10 x1 x9 x11) and (x10 x4 x11), however, are viable candidates for
a conflict clause.

The distinguishing property of clauses C7 and C8 when compared to clause
C9 in Example 1.3.9 is that the former two clauses contain only one literal
assigned at the current decision level. This literal corresponds to a unique
implication point (UIP).

1.3. BOOLEAN SATISFIABILITY CHECKING: TECHNIQUES 15

x1@6

x3@6

x9@1

x2@6

x4@6

x5@6

x6@6

x11@3

x10@3

C3

�

C2

C2

C1 C3 C4

C5

C4

C5

C6

C6

Figure 1.8: An implication graph with two unique implication points

x1@6

x3@6

x9@1

x2@6

x4@6

x5@6

x6@6

x11@3

x10@3

C3

�

C2

C2

C1 C3 C4

C5

C4

C5

C6

C6

Figure 1.9: Possible cuts separating decision variables from the conflicting clause

16 CHAPTER 1. BOOLEAN SATISFIABILITY SOLVERS

À If conflict at decision level 0 → Unsat

Á Repeat:

Ê if all variables assigned return Sat

Ë Make decision

Ì Propagate constraints

Í No conflict? Go to Ê

Î If decision level = 0 return Unsat

Ï Analyse conflict

Ð Add conflict clause

Ñ Backtrack and go to Ì

Figure 1.10: The DPLL algorithm with clause learning

Definition 1.3.6 (Unique Implication Point) A unique implication point
is any node (other than the conflict node) in the partial conflict graph which
is on all paths from the decision node1 to the conflict node of the current deci-
sion level.

Accordingly, we can stop searching for a conflict clause (which is done by
means of resolution) once we reach a unique implication point. But which
UIP should we choose? We will base our choice on the following property of
the conflict clause corresponding to the UIP closest to the conflict (referred
to as the first UIP): by construction, the conflict clause induced by the first
UIP subsumes any other conflict clause except for the asserting literal. For
instance, in Example 1.3.9, C7 ≡ (x10 x1 x9 x11) contains all literals that occur
in C8 ≡ (x10 x4 x11), except for the literal x4 which was assigned at decision
level 6. Therefore, choosing C8 as conflict clause has the following advantages:

1. The conflict clause C8 is smaller than C7, making it a more likely candidate
for unit implications at a later point in the search algorithm.

2. Stopping at the first UIP has the lowest computational cost.

3. The second most recent decision level in the clause C8 is at least as low
as in any other conflict clause, which forces the solver to backtrack to a
lower decision level.

The “first UIP” strategy is implemented in Chaff [MZM+01], whereas
Grasp [MSS96], in contrast, learns clauses at all UIPs.

Figure 1.10 shows the complete DPLL algorithm with clause learning.

1The decision node of the current decision level is a unique implication point by definition.

1.3. BOOLEAN SATISFIABILITY CHECKING: TECHNIQUES 17

1.3.7 Decision Heuristics

Step Á.Ë in Figure 1.10 leaves the question of which variable to assign open. As
we know from Section 1.3.3, this choice has no impact on the completeness of the
search algorithm. It has, however, a significant impact on the performance of
the solver, since this choice is instrumental in pruning the search space. [MS99]
provides an overview over heuristics for choosing decision variables.

Dynamic Largest Individual Sum

Choose assignment s.t. number of satisfied clauses is maximised

• px . . .# of unresolved clauses containing x

• nx . . .# of unresolved clauses containing x

• Let x be variable for which px is maximal

• Let y be variable for which ny is maximal

• If px > ny choose x 7→ 1

• Otherwise, choose y 7→ 0

Disadvantage: High overhead

Jeroslow-Wang

Assign high weight to variables occurring in short clauses [JW90]

• For each literal ` in F :

J(`) =
∑

c∈F s.t. `∈c

2−|c|

• Exponentially higher weight to literals in short clauses

• Choose (unassigned) literal ` that maximises J(`) and ` 7→ 0

• Weight updated dynamically (whenever conflict clause added)

Variable State Independent Decaying Sum (VSIDS)

Favour literals in recently added conflict clauses

• Each literal has counter initialised to 0

• When clause is added, literals in clause are boosted

• Periodically, all counters divided by constant

• Choose unassigned literal with highest counter

18 CHAPTER 1. BOOLEAN SATISFIABILITY SOLVERS

• Implemented in Chaff [MZM+01]

– Maintain list of unassigned literals sorted by counter

– Update list when adding conflict clauses

– Decision in O(1)

• Improved performance by order of magnitude

• Enforces local search

Representing the counter using integer variables leads to a large number of
ties. MiniSAT avoids this problem by using a floating point number to represent
the weight [ES04]. Another possible (but significantly more complex) strategy
is to concentrate only on unresolved conflicts by maintaining a stack of conflict
clauses [GN02].

1.3.8 Unsatisfiable Cores

Given an unsatisfiable instance F , we can use the techniques described in
Section 1.3.6 to construct a resolution refutation (see Definition 1.3.2 in Sec-
tion 1.3.2). Intuitively, such a refutation identifies a reason for the inconsistency
of the clauses in F . The clauses at the leaves of a resolution refutation are a
subset of the clauses of F . By construction, the conjunction of these clauses is
unsatisfiable.

Definition 1.3.7 (Unsatisfiable Core) Given an unsatisfiable formula F ≡∏n
i=1 Ci, any unsatisfiable subset of the set of clauses of F is an unsatisfiable

core.

• An unsatisfiable core of a formula is not necessarily unique.

• An unsatisfiable core is minimal if removing any clause from the core
makes the remaining set of clauses satisfiable.

Example 1.3.10 (Constructing Unsatisfiable Cores) Consider the follow-
ing formula in conjunctive normal form:

(x + y) · (x + y) · (x + z) · (x + z) · (z + y + x)

The problem instance does not contain unit literals, so the satisfiability solver
is forced to make a decision. The VSIDS heuristic (see Section 1.3.7) assigns
the highest priority to the literal x. Accordingly, the solver assigns x 7→ 1. This
decision immediately yields a conflict, as depicted in Figure 1.11a. Accordingly,
the solver derives a conflict clause (x) – the justifying resolution step is shown
in Figure 1.11b. The conflict clause (x) forces the solver to assign x 7→ 1 at
decision level zero (x@0). Again, this leads to a conflict (see Figure 1.11c). The
corresponding conflict clause is (x). This time, however, the conflict occurs at
decision level zero and the satisfiability solver determines that the instance is

1.3. BOOLEAN SATISFIABILITY CHECKING: TECHNIQUES 19

x@1

x@1

�

(x + y)

(x + y)

(a) Implication
graph for decision
x@1

x + yx + y

x
(b) Resolution for con-
flict clause (x)

x@0

x@0

�

(x + z)

(x + z)

(c) Implica-
tion graph for
implication x@0

x + zx + z

x
(d) Resolution for con-
flict clause (x)

x + yx + y

x

x + zx + z

x

�
(e) Final resolution proof

Figure 1.11: Construction of a resolution proof

unsatisfiable. The SAT solver finalises the resolution proof by resolving (x) and
(x) (see Figure 1.11e).

The unsatisfiable core

{ (x + y), (x + y), (x + z), (x + z) }

can be easily extracted from the resolution proof in Figure 1.11e. The clause
(z +y +x) did not contribute to the contradiction and is therefore not contained
in the core.

Resolution proofs and unsatisfiable cores have applications in hardware ver-
ification [McM03].

Definition 1.3.8 (Minimal and Minimum Unsatisfiable Cores) Let UC
be an unsatisfiable core of the formula F (i.e., a set of clauses UC ⊆ F such
that

∧
{C|C ∈ UC} → 0). The unsatisfiable core UC is minimal if removing

any one of its clauses Ci leaves the conjunction of the remaining clauses UC\Ci

satisfiable. An unsatisfiable core is minimum if the original formula does not
contain an unsatisfiable core UC2 such that |UC2| < |UC|.

1.3.9 Incremental Satisfiability Solving

Many applications of SAT solvers require solving a sequence of similar instances
which share a large number of clauses. Incremental satisfiability solvers [Str01,
KSW01] support the reuse of learnt clauses in subsequent calls to the SAT solver
when only a fraction of the clauses of the original problem have changed. To

20 CHAPTER 1. BOOLEAN SATISFIABILITY SOLVERS

this end, an incremental solver drops all learnt clauses and reverts all decisions
that derive from clauses that are part of the original instance but not of the
subsequent related problem.

1.3.10 Pre-processing Formulae

This section covers pre-processing techniques presented in [EB05] which enable
us to reduce the size of the formula either before passing it to a satisfiability
checker or during the search process.

Subsumption

A clause C1 is said to subsume a clause C2 if C1 ⊆ C2, i.e., all literals in
C1 also occur in C2. If formula in CNF contains two clauses C1 and C2 such
that C1 subsumes C2, then C2 can be discarded. This is justified by the fact
that, given a resolution proof, we can replace any occurrence of a clause C2

by a clause C1 which subsumes C2 without invalidating the correctness of the
proof. In fact, such a modification typically enables a reduction of the size of
the proof [BIFH+11].

Self-subsuming Resolution

Even though initial instance does not necessarily contain clauses subsuming oth-
ers, such clauses may materialise during the search process. Eén and Biere [EB05]
observes that formulae in CNF often contain clauses (x+C1) which almost sub-
sume clauses (x + C2) (where C1 ⊆ C2). After one resolution step we obtain
the clause Res((x+C1), (x+C2)) = C2, which subsumes (x+C2). Accordingly,
the clause (x+C2) can be dropped after resolution. Eén and Biere dubbed this
simplification rule self-subsuming resolution.

Efficient data structures for implementing (self-)subsumption are presented
in [EB05].

Variable Elimination by Substitution

Formulae that are encoded in CNF using the transformation introduced in Sec-
tion 1.2.1 (or a similar approach) typically contain a large number of functionally
dependent variables, namely the fresh variables introduced to represent terms
(or gate outputs, respectively). In the formula in Example 1.2.1, for instance,
the value of the variable x1 is completely determined by the values of y and z:

(x1 ↔ (y ↔ z))︸ ︷︷ ︸
(x1+y+z)·(x1+z+y)·(y+z+x1)·(y+z+x1)

The algorithms previously presented are oblivious to this structural property
and therefore fail to exploit it to restrict the set of decision variables to the
functionally independent variables.

1.3. BOOLEAN SATISFIABILITY CHECKING: TECHNIQUES 21

Eén and Biere [EB05] presents an approach that eliminates dependent vari-
ables by substitution. First, note that the auxiliary variable x1 can be eliminated
using the rule for eliminating atomic formulae introduced in Section 1.3.3. The
application of this rule amounts to variable elimination by means of resolution.
Given a set S of clauses all of which contain x, we can partition S into clauses
containing x and clauses containing x. Let Sx

def= {C |C ∈ S, x ∈ C} and
Sx

def= {C |C ∈ S, x ∈ C}. Abusing the notation we introduced in Section 1.3.2,
we define

Res(Sx, Sx, x) def= {Res(Cx, Cx, x) |Cx ∈ Sx, Cx ∈ Sx} .

A clause is trivial if it contains a literal and its negation. We observe that the
pairwise resolution of the clauses corresponding to a definition of x introduced
by the Tseitin transformation (see Table 1.2) yields only trivial clauses. We
demonstrate this for the definition x1 ↔ (y ↔ z) introduced in Example 1.2.1.
Let

G
def= {(x1 + y + z), (x1 + z + y), (y + z + x1), (y + z + x1)}

denote the set of clauses introduced by the transformation. Splitting G as
suggested above yields

Gx = {(x1 + y + z), (x1 + z + y)} Gx = {(y + z + x1), (y + z + x1)} ,

and we obtain

Res(Gx, Gx, x) = {(y + z + z), (y + z + y), (z + y + y), (z + y + z)} .

The reader may verify that this holds for all transformations presented in
Table 1.2. Accordingly, given a set of clauses S (all of which contain x) and the
definition G ⊆ S of x, we can safely omit the resolution steps Res(Gx, Gx, x).
Let R = S \G be the remaining clauses that are not part of the definition of x.
Then one can partition Res(Sx, Sx, x) into

Res(Rx, Gx, x) · Res(Gx, Rx, x)︸ ︷︷ ︸
S′′

· Res(Gx, Gx, x)︸ ︷︷ ︸
G′

· Res(Rx, Rx, x)︸ ︷︷ ︸
R′

.

In our example, Gx and Gx encode x + (y ↔ z) (i.e., x → (y ↔ z)) and
x + (y ↔ z), respectively. Accordingly, Res(Rx, Gx, x) can be interpreted as
substitution of (y ↔ z) for x in Rx (and similarly for Res(Gx, Rx, x)). As a
consequence, R′ can be derived from S′′ in a single hyper-resolution step (or a
sequence of resolution steps) [GOMS04]. It is therefore admissible to replace S
with S′′.

Example 1.3.11 Consider the CNF instance

(x1 + u)︸ ︷︷ ︸
Rx1

· (x1 + v)︸ ︷︷ ︸
Rx1

· (x1 + y + z) · (x1 + z + y)︸ ︷︷ ︸
Gx1

· (y + z + x1) · (y + z + x1)︸ ︷︷ ︸
Gx1

.

We obtain

S′′ ≡ (u + y + z) · (u + z + y) · (v + y + z) · (v + y + z) ,

allowing us to reduce the size of the original formula by two clauses.

22 CHAPTER 1. BOOLEAN SATISFIABILITY SOLVERS

1.4 Boolean Satisfiability Checking: Extensions

1.4.1 All-SAT

Given a satisfiable formula, the algorithms presented in Section 1.3 provide a
single satisfying assignment. Some applications, however, require us to enu-
merate all satisfiable assignments of a formula [McM02]. It is easy to see that
solving this problem is at least as hard as the Boolean satisfiability problem
(Definition 1.3.1). In fact, the problem of determining the number of satisfying
assignments of a formula is a prominent representative of the complexity class
#P (see, for instance, [AB09]).

In practice, the problem can be tractable for certain instances, even though
no polynomial algorithm is known. We can force the SAT solver to enumerate
all satisfying assignments by subsequently blocking all assignments previously
found. As explained in Section 1.2.1, any satisfying assignment A of a formula
F can be represented as a cube over the variables of F . The negation of such a
cube is a clause (by De Morgan’s theorem). Adding this clause C to F effectively
blocks the assignment, since C is clearly in conflict with the current assignment.
C is therefore called a blocking clause.

While we can take advantage of incremental satisfiability checking algorithms
(c.f. Section 1.3.9), the size of the formula augmented with blocking clauses
grows quickly. Moreover, blocking clauses which contain all variables of the
original instance are less likely to become unit. Therefore, it is desirable to
reduce the size of the blocking clause [McM02], i.e., to construct a smaller clause
which still blocks the assignment A. One possibility is to block the decisions
that led to the current assignment (this information can be extracted from the
trail described in Section 1.3.4). Let D be the cube representing these decisions.
Clearly, F ·D ↔ CA, i.e., the decisions, in conjunction with the original formula,
imply the single and unique assignment A (and vice versa). Moreover, D → CA.
Therefore D is a viable candidate for blocking A.

An example application of All-SAT is presented in Example 1.4.7.

1.4.2 Cardinality Constraints

Satisfiability solvers are designed to work in the Boolean domain and do not
support numeric reasoning per se. There is a number of applications for which
it is desirable, however, to have at least rudimentary support for arithmetic
over bounded domains. A common approach is to represent binary numbers
using the two’s complement system and to encode arithmetic operations using
their corresponding circuit representation. Figure 1.12 shows the encoding of
addition/subtraction as a ripple-carry-adder (Figure 1.12a), implemented as
a chain of full adders (Figure 1.12b). This technique is known as eager bit-
flattening. We refer the reader to [KS08] for a more detailed treatment of this
topic.

Cardinality constraints are a common application of numerical constraints.
Given a set {`1, . . . , `n} of literals, a cardinality constraint ((

∑
i `i) ≤ k) rules

1.4. BOOLEAN SATISFIABILITY CHECKING: EXTENSIONS 23

s = a ± b

FA

a3 b3

o
s3

FA

a2 b2

s2

FA

a1 b1

s1

FA

a0 b0

s0

m

(a) Ripple carry adder

ciba

co s
(b) Full adder

Figure 1.12: Encoding addition and subtraction in propositional logic

out all assignments in which more than k of these literals evaluate to 1 (here,
∑

denotes the arithmetic sum and not the logical or operator). This constraint can
technically be encoded by constructing a circuit that computes k−(

∑
i `i) (using

a chain of adder-subtractors as shown in Figure 1.12) and checking for arithmetic
underflow. Such an encoding, however, introduces chains of exclusive-or gates,
which pose a challenge to contemporary satisfiability checkers.

Figure 1.13 shows a sorting network for two literals, an alternative way of
encoding the constraint ((

∑
i `i) ≤ k) (where i = 2 in Figure 1.13). Intuitively,

a sorting network shuffles all input values that are 1 “to the left”, i.e., if m of
the inputs of an n-bit sorting network (where m ≤ n) are 1, then the output is
a sequence of m ones followed by n−m trailing zeroes. To encode an “at most
k” constraint it is therefore sufficient to constrain the (k + 1)th output signal
to 0. The advantage of this construction over the previously discussed encoding
is that sorting networks can be built entirely from and-gates and or-gates (by
cascading the circuit shown in Figure 1.13). Sorting networks for n bits can be
implemented using O(n · (log n)2) (see, for instance, [Par92]) or even O(n · log n)
gates [AKS83].

1.4.3 Maximum Satisfiability Problem (MAX-SAT)

Definition 1.4.1 (Maximum Satisfiability Problem) Given a formula F
in conjunctive normal form, determine the maximum number of clauses of F

24 CHAPTER 1. BOOLEAN SATISFIABILITY SOLVERS

S

`1 `2

o1 o2

`1 `2 o1 o2

0 0 0 0
0 1 1 0
1 0 1 0
1 1 1 1

o1
def= `1 + `2

o2
def= `1 · `2

Figure 1.13: A sorting network for two literals

that can be satisfied by some assignment.

If (and only if) the formula F is satisfiable, then there is an assignment that
satisfies all of its clauses. Accordingly, the MAX-SAT problem is NP-hard.
If, however, F is unsatisfiable, one needs to determine the largest subset of
the clauses of F which, if conjoined, are still satisfiable. Equivalently, one can
compute the smallest set of clauses that need to be dropped from the original
instance to make it satisfiable.

Example 1.4.1 Consider the unsatisfiable formula

(r + s + t) · (r + s) · (r) · (t) · (s) . (1.3)

Dropping the clause (t) makes the instance satisfiable. Note that the largest set
of satisfiable clauses is not unique: dropping the clause (r) also results in a
satisfiable formula with four clauses as well.

The partial MAX-SAT problem is a generalisation of the MAX-SAT prob-
lem, in which some of the clauses are tagged as hard and must not be dropped.

Definition 1.4.2 (Partial Maximum Satisfiability Problem) Given a for-
mula F and a set {C1, . . . , Cm} ⊆ F of hard clauses, determine the maximum
number of clauses of F that can be satisfied by some assignment A |=

∏m
i=1 Ci.

We refer to clauses of a partial MAX-SAT instance that are not hard as soft
clauses.

Example 1.4.2 We revisit Example 1.4.1, but require that the clauses (r) and
(t) of Formula (1.3) must not be dropped this time. In this scenario, dropping
(r + s + t) makes the formula satisfiable. Note that dropping either (r + t) or
(s) does not yield a satisfiable instance.

Relaxation Literals

The satisfiability checking techniques covered in Section 1.3 lack the ability
to drop clauses. Contemporary satisfiability solvers such as MiniSAT [ES04],
however, do at least provide the option to a specify a partial assignment, which
can be reverted in a subsequent call to the solver without sacrificing the learnt
clauses that do not depend on this assignment.

1.4. BOOLEAN SATISFIABILITY CHECKING: EXTENSIONS 25

As it turns out, such a mechanism is not required to exclude clauses from
the search process if we augment these clauses with so called relaxation literals.
A relaxation literal is a variable v that does not occur in the original formula.
If we replace a clause Ci that is part of the original formula with the relaxed
clause (vi +Ci), the variable vi acts as a switch which enables us to activate the
clause Ci by setting vi to 0. Conversely, the solver will ignore (vi + Ci) if vi is
set to 1 (by virtue of the affirmative-negative rule introduced in Section 1.3.3).

Example 1.4.3 We continue working in the setting of Example 1.4.2. The
following formula resembles Formula 1.3, except for the fact that the soft clauses
have been augmented with the relaxation literals u, v, and w, respectively:

(u + r + s + t) · (v + r + s) · (r) · (t) · (w + s) . (1.4)

Now, any satisfiability solver can be used to determine that Formula 1.4 is sat-
isfiable. The resulting satisfying assignment to u, v, and w determines which
clauses were “dropped” by the solver.

Unfortunately, the technique outlined in Example 1.4.3 gives us no control
over which, and more importantly, how many clauses the solver drops. Unless
we modify the decision procedure, minimality is not guaranteed.

We can, however, restrict the number of dropped clauses by adding cardi-
nality constraints (Section 1.4.2) to the relaxed formula. The corresponding
constraint for the formula in Example 1.4.3, (u + v + w) ≤ 1, instructs the
SAT solver to drop at most one clause. Moreover, we already know that the
solver has to drop at least one clause, since the original formula is unsatisfi-
able [MPLMS08]. In the case of Example 1.4.3, the SAT solver will find a
satisfying (both literally and figuratively) solution. The rather restrictive car-
dinality constraint, however, does not account for (partial) MAX-SAT solutions
that require the relaxation of more than one clause.

Example 1.4.4 Consider the unsatisfiable formula

(s) · (s) · (t) · (t) .

Note that this formula has two disjoint unsatisfiable cores (c.f. Section 1.3.8).
Accordingly, the formula

(u + s) · (v + s) · (w + t) · (x + t) · (
∑

{u, v, w, x} ≤ 1)

is still unsatisfiable.

The formula in Example 1.4.4 requires the solver drop at least two clauses.
This can be achieved by replacing the cardinality constraint with the slightly
modified constraint

∑
{u, v, w, x} ≤ 2. As outlined in Section 1.4.2, this can

be easily achieved by modifying a single unit clause as long as we use sorting
networks to encode the constraint. Moreover, such a modification does not

26 CHAPTER 1. BOOLEAN SATISFIABILITY SOLVERS

necessarily require us to restart the search from scratch, as mentioned in the first
paragraph of Section 1.4.3. Incremental satisfiability solvers (see Section 1.3.9)
are able to retain at least some of the clauses learnt from the first instance.

Accordingly, it is possible to successively relax the cardinality constraint in
an efficient manner. If we follow this scheme, we obtain an algorithm to solve the
partial MAX-SAT problem. If we successively increase the numeric parameter
of the cardinality constraint (by forcing one single assignment of a literal of the
sorting network), starting with one, we have a solution of the partial MAX-SAT
problem readily at hand as soon as the SAT solver finds a satisfying assignment.

Core-Guided MAX-SAT

Example 1.4.5 Consider the unsatisfiable formula

(r + t) · (r + s) · (s) · (s) · (t) · (t) ,

which resembles the formula in Example 1.4.4, except for the two clauses (r + t)
and (r + s). Neither of these clauses influences the satisfiability of the formula.
Accordingly, instrumenting these clauses with relaxation literals unnecessarily
introduces additional variables and increases the size of the sorting network.

It is possible to avoid this unnecessary overhead in Example 1.4.5 by exclud-
ing the clauses (r + t) and (r + s) from the set of clauses the solver considers
for removal. However, how can we know that this is sound? The exclusion of a
random clause may result in an invalid answer to the MAX-SAT problem.

The answer lies in the minimal unsatisfiable cores (Definition 1.3.8 in Sec-
tion 1.3.8) of the formula. A clause C that is not contained in any (minimal)
unsatisfiable core of F has no impact on the satisfiability of F . Accordingly, it
is not necessary to instrument C with a relaxation literal.

Accordingly, it is possible to use cores to guide the selection of clauses to be
relaxed can be [FM06] as demonstrated in the following example.

Example 1.4.6 We continue working in the setting of Example 1.4.5. Follow-
ing the method presented in Example 1.3.10, we obtain an initial core {(s), (s)}.
Similar to Example 1.4.4, we instrument the clauses occurring this core with
fresh relaxation literals and impose a cardinality constraint on these literals:

(r + t) · (r + s) · (u + s) · (v + s) · (t) · (t) · (
∑

{u, v} ≤ 1) (1.5)

This relaxation “deactivates” the core (and also overlapping non-minimal cores,
which demonstrates that core guiding our instrumentation is not required to
be minimal). The modified formula (1.5), however, is still not satisfiable. It
contains a second core, namely {(t), (t)}. Defusing this core in a similar manner
as the previous one yields

(r+t) · (r+s) · (u+s) · (v+s) · (w+t) · (x+t) · (
∑

{u, v} ≤ 1) · (
∑

{w, x} ≤ 1)

1.4. BOOLEAN SATISFIABILITY CHECKING: EXTENSIONS 27

À While instance unsatisfiable, repeat:

Ê Obtain unsatisfiable core UC

Ë If UC contains no soft clauses, return Unsat

Ì For all soft clauses {C1, . . . , Cn} ⊆ UC

∗ introduce fresh relaxation variable vi

∗ Ci := Ci ∪ {vi}
Í Add constraint (

∑n
i=1 vi) ≤ 1

Á Obtain satisfying assignment A

Â Return number of relaxation literals vi with A(vi) = 1

Figure 1.14: A core-guided MAX-SAT algorithm

A final run of the satisfiability solver yields a satisfying assignment which in-
dicates that we need to relax two clauses. Note that it was not necessary to
instrument the clauses (r + t) and (r + s) – this is a crucial advantage large
when it comes to large problem instances.

Figure 1.14 shows the pseudo-code of the core-guided MAX-SAT algorithm
outlined in Example 1.4.6. Note that the introduction of relaxation literals
complicates the use of incremental SAT algorithms (c.f. Section 1.3.9). At least
the clauses learnt from hard constraints, however, can be retained across all
instances.

1.4.4 Minimal Correction Sets (MCS)

In the previous section, the focus gradually shifted from clauses that can be sat-
isfied simultaneously to clauses that need to be dropped to obtain a satisfiable
formula. A set of clauses that has the latter property is also known as mini-
mal correction set (MCS). The complement of each maximal set of satisfiable
clauses is an MCS. Accordingly, minimal correction sets are a generalisation
of the MAX-SAT problem [LS09] – as the name indicates, we merely require
minimality, i.e., in general, an MCS is not a minimum.

Given this close relationship between the MAX-SAT problem and MCSes, it
seems natural to extend the algorithm from Figure 1.14 to compute correction
sets. Indeed, the algorithm readily provides one MCS (whose size, in fact, is a
minimum). But what if we desire to compute more than one, or even all MCSes?
The technique presented in [LS09] is based on the algorithm in Section 1.4.3
and relies on blocking clauses (see Section 1.4.1) to exhaustively enumerate all
minimal correction sets.

The algorithm in Figure 1.15 uses several auxiliary helper functions which
implement techniques we have encountered in the previous sections.

28 CHAPTER 1. BOOLEAN SATISFIABILITY SOLVERS

• The procedure Instrument adds relaxation literals to clauses of the for-
mula provided as parameter. If no second parameter is provided, the
procedure instruments all clauses. Otherwise, the procedure only instru-
ments clauses contained in the set of clauses provided as second parameter.
This process is outlined in Example 1.4.3.

• The procedure Block adds blocking clauses that rule out the minimal
correction sets provided as parameter. To this end, Block adds one
blocking clause for each MCS and assures thus that at least one clause of
each MCS provided as parameter is not dropped.

• AtMost generates a cardinality constraint which states that at most k
clauses are dropped from the set of clauses provided as second parameter.
Cardinality constraints are discussed in Section 1.4.2.

• AllSAT enumerates all satisfying assignments to the relaxation literals
contained in the formula provided as parameter. In our context, each
of these assignments represents a minimal correction set. The respective
techniques are covered in Section 1.4.1.

At the core of the algorithm in Figure 1.15 lies the MAX-SAT algorithm
from Figure 1.14. In particular, the first intermediate result of the algorithm
in Figure 1.15 is the set of all minimum correction sets, obtained by means of
computing all solutions to the MAX-SAT problem. Subsequently, the algorithm
gradually relaxes the cardinality constraint, allowing for correction sets of a
larger cardinality while blocking MCSes found in previous iterations. In each
iteration, the algorithm enumerates all correction sets of cardinality k. By
induction, this guarantees the completeness of the algorithm; a formal argument
is given in [LS09].

Example 1.4.7 We recall the Formula 1.3 presented in Example 1.4.1:

(r + s + t) · (r + s) · (r) · (t) · (s)

We simulate the algorithm in Figure 1.15 on this example. Since MCSes = ∅
in the initial iteration of the algorithm, the relaxed formula in line Ã is satis-
fiable. If we follow the algorithm presented in Section 1.3.8, the satisfiability
solver returns the unsatisfiable core

{
(r + s + t) , (r), (t), (s)

}
. Accordingly, the

algorithm constructs the formula

(u + r + s + t) · (r + s) · (v + r) · (w + t) · (x + s) · (
∑

{u, v, w, x} ≤ 1)

Then, it incrementally constructs all satisfying assignments to {u, v, w, x} that
are consistent with this formula. We obtain the partial assignments

{u 7→ 1, v 7→ 0, w 7→ 0, x 7→ 0},
{u 7→ 0, v 7→ 1, w 7→ 0, x 7→ 0}, and
{u 7→ 0, v 7→ 0, w 7→ 1, x 7→ 0} .

1.4. BOOLEAN SATISFIABILITY CHECKING: EXTENSIONS 29

À k := 1

Á MCSes := ∅

Â UCk := unsatisfiable core of F

Ã While (Instrument(F) · (Block(MCSes)) is satisfiable

Ê Instrument clauses in UCk with relaxation literal:
Fk := Instrument(F , UCk) ·AtMost(k, UCk)

Ë Enumerate satisfying assignments to relaxation variables:
MCSes := MCSes ∪ AllSAT(Fk)

Ì UCk+1 := UCk ∪ core of Fk ·Block(MCSes)
(projected to clauses of F)

Í k := k + 1

Ä return MCSes

Figure 1.15: A core-guided algorithm to compute MCSes

and the corresponding blocking clauses (u), (v), and (w). The respective MCSes
of cardinality one are {(r+s+t)}, {r}, and {t}. Note that the partial assignment
{u 7→ 0, v 7→ 0, w 7→ 0, x 7→ 1} is not a satisfying assignment, since dropping
the clause (s) does not make the formula satisfiable – the unit clause (s) can
be inferred from (r + s) and (r). After blocking all MCSes (controlled by the
variables {u, v, w, x}), we end up with the formula

(u + r + s + t) · (r + s) · (v + r) · (w + t) · (x + s)

· (
∑

{u, v, w, x} ≤ 1) · (u) · (v) · (w) .

In step Ì, the algorithm constructs the core of this formula, replaces the in-
strumented clauses with their original counterparts, and drops the cardinality
constraint and the blocking clauses from the core. We obtain the new core

{(r + s + t) , (r + s) , (r), (t)} .

Note that, since the blocking clauses do not prevent (s) from being dropped, the
clause (r + s) must be contained in this core.

In the next step, the algorithm increases k. Now, all clauses have to be
instrumented (since the union of both cores computed so far happens to be the
set of all clauses of the original formula), and all MCSes computed so far need
to be blocked. In combination with the new cardinality constraint, we obtain

(u + r + s + t) · (y + r + s) · (v + r) · (w + t) · (x + s) · (u) · (v) · (w)

·(
∑

{u, v, w, x, y} ≤ 2) .

30 CHAPTER 1. BOOLEAN SATISFIABILITY SOLVERS

Since neither dropping (s) nor dropping (r+s) from the original instance makes
the formula satisfiable, the algorithm determines the satisfying assignment {u 7→
0, y 7→ 1, v 7→ 0, w 7→ 0, x 7→ 1}. This assignment is in fact the only satisfying
partial assignment to the variables {u, v, w, x, y} for the given formula. The
corresponding blocking clause is (x + y).

We leave it to the reader to verify that Instrument(F)·(u)·(v)·(w)·(x+y) in
line Ã is now unsatisfiable, and that the algorithm therefore terminates reporting
the MCSes

{(r + s + t)}, {(r)}, {(t)}, and {(s), (r + s)} .

1.4.5 Minimal Unsatisfiable Cores

Definition 1.4.3 (Hitting Set) Given a set of sets S, a hitting set of S is a
set H such that

∀S ∈ S .H ∩ S 6= ∅

• Let S be the set of all MCSes of an unsatisfiable formula F . Then
each (minimal) hitting set of S is a (minimal) unsatisfiable core (see Sec-
tion 1.3.8).

• Let S be the set of all minimal unsatisfiable cores of an unsatisfiable
formula F . Then each (minimal) hitting set of S is a (minimal) correction
set for F .

Example 1.4.8 The leftmost column in Figure 1.16 shows the set of all mini-
mal correction sets {{(s)}, {(r), (s)}, {(s), (r + s)}} for the unsatisfiable formula

F ≡ (s) · (r + s) · (r) · (s) .

The check-marks in the table indicate the occurrences of the clauses of F in
the respective MCS. By choosing a subset of clauses of F which “hit” all MC-
Ses, we obtain a minimal unsatisfiable core. The formula F has two minimal
unsatisfiable cores, namely {(s), (s)} and {(r), (s), (r + s)}. The choice of ap-
propriate “hitting” clauses is indicated in Figure 1.16 by oval and rectangular
boxes, respectively.

The problem of deciding whether a given set of sets has a hitting set of size
k (or smaller) is NP-complete ([Kar72] in [LS08]). An algorithm optimised for
the purpose of extracting cores from sets of MCSes can be found in [LS08].

Instead of presenting the algorithm suggested in [LS08], we draw the readers
attention to the fact that after the final iteration of the algorithm in Figure 1.15,
the set of clauses (Block(MCSes)) in step Â is a symbolic representation of
all minimal correction sets. Essentially, we are looking for assignments that
satisfy the CNF formula (Block(MCSes)). Note that the phase of all literals in
(Block(MCSes)) is negative, since the respective clauses block assignments of 1
to relaxation variables. Accordingly, in order to find minimal unsatisfiable cores,

1.4. BOOLEAN SATISFIABILITY CHECKING: EXTENSIONS 31

MCS (s) (r + s) (r) (s)

{(s)}
�� ��X

{(r), (s)} X
�� ��X

{(s), (r + s)} X
�� ��X

MUS:
�� ��{(s), (s)} {(r), (s), (r + s)}

Figure 1.16: MCSes are hitting sets of MUSes, and vice versa

we need to minimise the number of variables set to 0 in the satisfying assignment
to (Block(MCSes)). Again, this can be achieved by means of gradually relaxed
cardinality constraints.

Example 1.4.9 In Example 1.4.7, we ended up with the blocking clause

(u) · (v) · (w) · (x + y) ,

where the relaxation literals u, v, w, x, and y correspond to the clauses (r+s+t),
(r), (t), (s), and (r + s), respectively. Each of the clauses is satisfied if at least
one of its literals evaluates to 1 (and the corresponding variable evaluates to 0,
respectively). In order to find a minimal hitting set, we constrain the literals
using a cardinality constraint:

(u) · (v) · (w) · (x + y) ·
(∑

{u, v, w, x, y} ≤ k
)

Note that k has to be at least four, since there are four clauses which do not
share any literals. This threshold can be obtained using a syntactical analysis of
the formula or simply by incrementally increasing k until it is sufficiently large.

If we generate all minimal satisfying assignments to the constrained for-
mula (using blocking clauses in a way similar to Example 1.4.7) we obtain the
following assignments for k = 4:

{u 7→ 1, v 7→ 1, w 7→ 1, x 7→ 1, y 7→ 0} and
{u 7→ 1, v 7→ 1, w 7→ 1, x 7→ 0, y 7→ 1}

These assignments correspond to the minimal unsatisfiable cores

{(r + s + t), (r), (t), (s)}
{(r + s + t), (r), (t), (r + s)} .

The hitting set problem is equivalent to the set cover problem, an NP-
complete problem that has been extensively studied in complexity theory. We do
not claim that the technique in Example 1.4.9 is competitive compared to other
algorithms such as the one presented in [LS08] – the purpose of the example is
to gain a deeper understanding of hitting sets.

32 CHAPTER 1. BOOLEAN SATISFIABILITY SOLVERS

Bibliography

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A
Modern Approach. Cambridge University Press, 1st edition, 2009.

[AKS83] M. Ajtai, J. Komlós, and E. Szemerédi. An O(n log n) sorting
network. In ACM Symposium on Theory of Computing (STOC),
pages 1–9. ACM, 1983.

[BIFH+11] Omer Bar-Ilan, Oded Fuhrmann, Shlomo Hoory, Ohad Shacham,
and Ofer Strichman. Reducing the size of resolution proofs in linear
time. Software Tools for Technology Transfer (STTT), 13(3):263–
272, 2011.

[Bus98] Samuel R. Buss. Handbook of proof theory. Studies in logic and
the foundations of mathematics. Elsevier, 1998.

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures.
In ACM Symposium on Theory of Computing (STOC), pages 151–
158. ACM, 1971.

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A ma-
chine program for theorem-proving. Communications of the ACM,
5:394–397, July 1962.

[DP60] Martin Davis and Hilary Putnam. A computing procedure for
quantification theory. Journal of the ACM, 7:201–214, July 1960.

[EB05] Niklas Eén and Armin Biere. Effective preprocessing in SAT
through variable and clause elimination. In Theory and Applica-
tions of Satisfiability Testing (SAT), volume 3569 of Lecture Notes
in Computer Science, pages 102–104. Springer, 2005.

[ES04] Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In
Theory and Applications of Satisfiability Testing (SAT), volume
2919, pages 502–518. Springer, 2004.

[FM06] Zhaohui Fu and Sharad Malik. On solving the partial MAX-
SAT problem. In Theory and Applications of Satisfiability Testing
(SAT), volume 4121 of Lecture Notes in Computer Science, pages
252–265. Springer, 2006.

33

34 BIBLIOGRAPHY

[GN02] E. Goldberg and Y. Novikov. Berkmin: A fast and robust SAT-
solver. In Design Automation and Test in Europe (DATE), pages
142–149. IEEE, 2002.

[GOMS04] Éric Grégoire, Richard Ostrowski, Bertrand Mazure, and Lakhdar
Säıs. Automatic extraction of functional dependencies. In Theory
and Applications of Satisfiability Testing (SAT), volume 3542 of
Lecture Notes in Computer Science. Springer, 2004.

[Har09] John Harrison. Handbook of Practical Logic and Automated Rea-
soning. Cambridge University Press, 2009.

[JW90] Robert G. Jeroslow and Jinchang Wang. Solving propositional
satisfiability problems. Annals of Mathematics and Artificial In-
telligence, 1:167–187, 1990.

[Kar72] Richard M. Karp. Reducibility among combinatorial problems.
Complexity of Computer Computations, pages 85–103, 1972.

[Kro67] M. R. Krom. The decision problem for a class of first-order for-
mulas in which all disjunctions are binary. Mathematical Logic
Quarterly, 13(1-2):15–20, 1967.

[KS08] Daniel Kroening and Ofer Strichman. Decision procedures: An
algorithmic point of view. Texts in Theoretical Computer Science
(EATCS). Springer, 2008.

[KSW01] Joonyoung Kim, Karem Sakallah, and Jesse Whittemore. SATIRE:
A new incremental satisfiability engine. In Design Automation
Conference (DAC), pages 542–545. IEEE, 2001.

[LS08] Mark H. Liffiton and Karem A. Sakallah. Algorithms for com-
puting minimal unsatisfiable subsets of constraints. Journal of
Automated Reasoning, 40(1):1–33, 2008.

[LS09] Mark H. Liffiton and Karem A. Sakallah. Generalizing core-guided
MAX-SAT. In Theory and Applications of Satisfiability Testing
(SAT), volume 5584 of Lecture Notes in Computer Science, pages
481–494. Springer, 2009.

[McM02] Kenneth L. McMillan. Applying SAT methods in unbounded sym-
bolic model checking. In Computer Aided Verification (CAV), vol-
ume 2404 of Lecture Notes in Computer Science, pages 250–264.
Springer, 2002.

[McM03] Kenneth L. McMillan. Interpolation and sat-based model checking.
In Computer Aided Verification (CAV), volume 2725 of Lecture
Notes in Computer Science, pages 1–13. Springer, 2003.

BIBLIOGRAPHY 35

[MPLMS08] Paulo J. Matos, Jordi Planes, Florian Letombe, and João Marques-
Silva. A MAX-SAT algorithm portfolio. In European Conference
on Artificial Intelligence, volume 178 of Frontiers in Artificial In-
telligence and Applications, pages 911–912. IOS Press, 2008.

[MS95] João Paulo Marques-Silva. Search algorithms for satisfiability prob-
lems in combinational switching circuits. PhD thesis, University
of Michigan, 1995.

[MS99] João P. Marques-Silva. The impact of branching heuristics in
propositional satisfiability algorithms. In Progress in Artificial
Intelligence, (EPIA), volume 1695 of Lecture Notes in Computer
Science, pages 62–74. Springer, 1999.

[MSS96] João Paulo Marques-Silva and Karem A. Sakallah. GRASP – a new
search algorithm for satisfiability. In International Conference on
Computer-aided Design (ICCAD), pages 220–227. IEEE, 1996.

[MZM+01] Sharad Malik, Ying Zhao, Conor F. Madigan, Lintao Zhang, and
Matthew W. Moskewicz. Chaff: Engineering an efficient SAT
solver. Design Automation Conference (DAC), pages 530–535,
2001.

[Par92] Ian Parberry. The pairwise sorting network. Parallel Processing
Letters, 2:205–211, 1992.

[Rob65] J. A. Robinson. A machine-oriented logic based on the resolution
principle. Journal of the ACM, 12:23–41, January 1965.

[Str01] Ofer Strichman. Pruning techniques for the sat-based bounded
model checking problem. In Correct Hardware Design and Ver-
ification Methods (CHARME), volume 2144 of Lecture Notes in
Computer Science, pages 58–70. Springer, 2001.

[Tse83] G. Tseitin. On the complexity of proofs in poropositional log-
ics. In J. Siekmann and G. Wrightson, editors, Automation of
Reasoning: Classical Papers in Computational Logic 1967–1970,
volume 2. Springer, 1983. Originally published 1970.

[Zha03] Lintao Zhang. Searching the Truth: Techniques for Satisfiability
of Boolean Formulas. PhD thesis, Princeton University, 2003.

